Wednesday, December 23, 2015

Module Name: Mathematics for Management


Open University Malaysia
Faculty of Business and Management
BBMP 1103
Mathematics for Management


Name: Adam Khaleel

Tutor’ Name: Ali Shareef
Learning Centre: Villa College


Trimester:  September 2011





  1. (a)  2A+B=(1 2 2 -2 1 0 )
      A−3B=(-4 -3 -2 -1 0 -1 )
      1× 2A+B=(1 2 2 -2 1 0 )
      2× 2A-6B=(-8 -6 -4 -2 0 -2 )
           -    +      -
      7B=(1 2 2 -2 1 0 )-(-8 -6 -4 -2 0 -2 )
      7B=(9 8 6 0 1 2 )
       ∴    B=(97  87 67 0 17 27 ).
       A-3(97  87 67 0 17 27 )=(-4 -3 -2 -1 0 -1 )
       A-(277  247 187 0 37 67 )=(-4 -3 -2 -1 0 -1 )
       A=(277  247 187 0 37 67 )+(-4 -3 -2 -1 0 -1 )
           A=(-17  37 47 -7 37 -17 ).  (Zurni et al. 2010).
          (b)        3(-3 8 14 -5 0 -6 )-4(11 -3 7 12 2 -9 )
           =(-9 24 42 -15 0 -18 )-(44 -12 28 48 8 -36 )
           =(-53 36 14 -63 -8 18 ).

   2(-3 8 14 -5 0 -6 )(6 2 7 -5 10 -7 1 11 0 )
                     2×3                3×3
         =2((-18-40+14) (-6+80+154) (-21-56+0) (-30+0-6) (-10+0-66) (-35+0+0) )
         =2(-44 228 -77 -36 -76 -35 )
         =(-88 456 -154 -72 -152 -70 ).  (Zurni et al. 2010).

  1. (c) 1st row is selected
There is no inverse if determinant equals to zero.
1|4 2 6 a |-2|1 2 -2 a |+3|1 4 -2 6 |=0
1(4a-12)-2(a+4)+3(6+8)=0
4a-12-2a-8+42=0
2a+22=0
a=-222
a=-11
Therefore if a=-11, the determinant would be zero hence no inverse. (Zurni et al. 2010).

                  (d) |1 1+ac 1+bc 1 1+ad 1+bd 1 1+ae 1+be |1 1+ac 1 1+ad 1 1+ae
                        1(1+ad)(1+be)+1(1+ac)(1+bd)+1(1+bc)(1+ae)
1+ad+be+abde+1+ac+bd+abcd+1+bc+ae+abce
3+ad+be+ac+bd+bc+ae+abde+abcd+abce    →1
1(1+ad)(1+bc)+1(1+ae)(1+bd)+1(1+be)(1+ac)
1+ad+bc+abcd+1+ae+bd+abde+1+be+ac+abce
3+ad+bc+ae+bd+be+ac+abcd+abde+abce    →2
=1-2
=3+ad+be+ac+bd+bc+ae+abde+abcd+abce -3-ad-bc- ae-bd-be-ac-abcd-abde-abce    
= 0.  (Zurni et al. 2010).
  1. (e) -0|-2 0 6 0 5 -7 4 9 0 |-2|3 4 2 0 5 -7 4 9 0 |-3|3 4 2 -2 0 6 4 9 0 |+0|3 4 2 -2 0 6 0 5 -7 |
    =-2(3|5 -7 9 0 |+4|4 4 5 -7 |)-3(2|-2 0 4 9 |-6|3 4 -2 0 |)
    =-2(189-152)-3(-36-66)
    =-2(37)-3(-102)
    =-74+306
    =232.  (Zurni et al. 2010).

  1.          (a) (0 1 -3 2 3 -1 4 5 -2 )(x1  x2 x3 )=(-5 7 10 )
(b) 0|3 -1 5 -2 |-1|2 -1 4 -2 |-3|2 3 4 5 |
     =0(-6+5)-1(-4+4)-3(10-12)
     =0-0-3(-2)
     = 6.  (Zurni et al. 2010).
(c) Minor matrix
    (0 1 -3 2 3 -1 4 5 -2 )
   ((-6+5) (-4+4) (10-12) (-2+15) (0+12) (0-4) (-1+9) (0+6) (0-2) )
   =(-1 0 -2 13 12 -4 8 6 -2 ).
   (c)             Cofactor matrix
                 ((+×-1) (-×0) (+×-2) (-×+13) (+×+12) (-×-4) (+×+8) (-×+6) (+×-2) )
                  =(-1 0 -2 -13 12 4 8 -6 -2 )
Ad joint matrix
= (Cofactor)T
=(-1 -13 8 0 12 -6 -2 4 -2 )
Inverse matrix
=16(-1 -13 8 0 12 -6 -2 4 -2 )
=(-16 -136 43 0 2 -1 -13 23 -13 ). Zurni, O., Noraziah, H, M., Hawa, I., Fatinah, Z., & Azizan, S. (2010, p.13-16).
     (d) Solutions
=(-16 -136 43 0 2 -1 -13 23 -13 )(-5 7 10 )
           3×3               3×1
=((56-916+403) (0+14-10) (53+143-103) )
(x1 x2 x3 )=(-1 4 3 ).(Zurni et al. 2010).
  1. (a) (0 1 1 3 -1 1 1 1 -3 )(x y z )(6 -7 -13 )
Determinant of A
0|-1 1 1 -3 |-1|3 1 1 -3 |+1|3 -1 1 1 |
=0-1(-9-1)+1(3+1)
=14
Determinant of A1
(6 1 1 -7 -1 1 -13 1 -3 )
6|-1 1 1 -3 |-1|-7 1 -13 -3 |+1|-7 -1 -13 1 |
=6(3-1)-1(21+13)+1(-7-13)
=-42
Determinant A2
(0 6 1 3 -7 1 1 -13 -3 )
0|-7 1 -13 -3 |-6|3 1 1 -3 |+1|3 -7 1 -13 |
=0-6(-9-1)+1(-39+7)
=28
Determinant A3
(0 1 6 3 -1 -7 1 1 -13 )
0|-1 -7 1 -13 |-1|3 -7 1 -13 |+6|3 -1 1 1 |
=0-1(-39+7)+6(3+1)
=56
        x=-4214         y=2814               z=5614
              =-3               =2                     =4              (Zurni et al. 2010).

              (b)          y=x2-4x-5
     dydx=2x-4
    Gradient at point A
    M1=2(3)-4=2
    Coordinate of point A
    y=32-4(3)-5=-8
    (x,y)=(3,-8).  Uses of differentiation. (n.d).
    Equation of tangent line
    -8=2(3)+c        c=-14
    y=2x-14
    Equation of perpendicular line
    m1×m2=-1            2×m2=-1
    m2=-12
    -8=-12(3)+c           c=-132
    y=-12x-132
    Coordinate of point B
    -12x-132=x2-4x-5
   (b)    2x2-7x+3=0          (x-3)(2x-1)=0
    x=3                 x=12
       y=(12)2-4(12)-5       y=-274          ∴B=(12,-274)
    Coordinate at x=0
    y=02-4(0)-5    ∴(0,-5)
    Coordinates at y=0
    x2-4x-5=0       (x-5)(x+1)=0
    x=5       x=-1       (-1,0)     (5,0)
    Coordinate at minimum point
    y=22-4(2)-5       ∴(2,-9).    (Zurni et al. 2010).
 
 (c)
(Zurni et al. 2010).
  1. (a)
  1. f(x)=x+22
Dom f={xϵR, x≥-2}
      Range f={yϵR, y≥0}
g(x)=3-x5-x
Dom g={xϵR, x≠5 }
Range g={yϵR, -1≤y≤3}

h(x)=x2-6
Dom h={xϵR, }
Range h={yϵR, y≥-6}
  1. ff(34)=34+22   =3
3+22    =52    =1.12

gf(47)= 47+22         72=3.5
3-3.55-3.5   =-13
hf(x)=(x+22)2-6

=(x12+2122)2-6
=x+24-6
=x-224.             Operations on Functions. (n.d).


  1. y=3-x5-x
    x=3-y5-y
    5x-xy=3-y
    y(x-x)=-5x+3
    g-1(x)=(-5x+3)(1-x).      Definition of Inverse Function. (n.d).
                
        (b)
=x-23y5z3×x4325x12y-23
=x16y53125z3
      (Zurni et al. 2010).
         
         (c)                  
                                  = 25+29-5×4226
=5+9-(5×2)6
=23
    (Zurni et al. 2010).


References
Definition of Inverse Function. (n.d). Retrieved September 26, 2011, from http://www.regentsprep.org/Regents/math/algtrig/ATP8/inverselesson.htm
Operations on Functions. (n.d). Retrieved September 26, 2011, from http://www.purplemath.com/modules/fcnops.htm
Uses of differentiation. (n.d). Retrieved September 26, 2011, from http://www.mathsrevision.net/alevel/pages.php?page=45
Zurni, O., Noraziah, H, M., Hawa, I., Fatinah, Z., & Azizan, S. (2010). Mathematics for Management. Malaysia: Metero Doc. Sdn. Bhd.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.