Open University Malaysia
Faculty of Business and Management
BBMP 1103
Mathematics for Management
Name: Adam Khaleel
Tutor’ Name: Ali Shareef
Learning Centre: Villa College
Trimester: September 2011
- (a) 2A+B=(1 2 2 -2 1 0 )
A−3B=(-4 -3 -2 -1 0 -1 )
1× 2A+B=(1 2 2 -2 1 0 )
2× 2A-6B=(-8 -6 -4 -2 0 -2 )
- + -
7B=(1 2 2 -2 1 0 )-(-8 -6 -4 -2 0 -2 )
7B=(9 8 6 0 1 2 )
∴ B=(97 87 67 0 17 27 ).
A-3(97 87 67 0 17 27 )=(-4 -3 -2 -1 0 -1 )
A-(277 247 187 0 37 67 )=(-4 -3 -2 -1 0 -1 )
A=(277 247 187 0 37 67 )+(-4 -3 -2 -1 0 -1 )
∴ A=(-17 37 47 -7 37 -17 ). (Zurni et al. 2010).
(b) 3(-3 8 14 -5 0 -6 )-4(11 -3 7 12 2 -9 )
=(-9 24 42 -15 0 -18 )-(44 -12 28 48 8 -36 )
=(-53 36 14 -63 -8 18 ).
2(-3 8 14 -5 0 -6 )(6 2 7 -5 10 -7 1 11 0 )
2×3 3×3
=2((-18-40+14) (-6+80+154) (-21-56+0) (-30+0-6) (-10+0-66) (-35+0+0) )
=2(-44 228 -77 -36 -76 -35 )
=(-88 456 -154 -72 -152 -70 ). (Zurni et al. 2010).
- (c) 1st row is selected
There is no inverse if determinant equals to zero.
1|4 2 6 a |-2|1 2 -2 a |+3|1 4 -2 6 |=0
1(4a-12)-2(a+4)+3(6+8)=0
4a-12-2a-8+42=0
2a+22=0
a=-222
a=-11
Therefore if a=-11, the determinant would be zero hence no inverse. (Zurni et al. 2010).
(d) |1 1+ac 1+bc 1 1+ad 1+bd 1 1+ae 1+be |1 1+ac 1 1+ad 1 1+ae
1(1+ad)(1+be)+1(1+ac)(1+bd)+1(1+bc)(1+ae)
1+ad+be+abde+1+ac+bd+abcd+1+bc+ae+abce
3+ad+be+ac+bd+bc+ae+abde+abcd+abce →1
1(1+ad)(1+bc)+1(1+ae)(1+bd)+1(1+be)(1+ac)
1+ad+bc+abcd+1+ae+bd+abde+1+be+ac+abce
3+ad+bc+ae+bd+be+ac+abcd+abde+abce →2
=1-2
=3+ad+be+ac+bd+bc+ae+abde+abcd+abce -3-ad-bc- ae-bd-be-ac-abcd-abde-abce
= 0. (Zurni et al. 2010).
- (e) -0|-2 0 6 0 5 -7 4 9 0 |-2|3 4 2 0 5 -7 4 9 0 |-3|3 4 2 -2 0 6 4 9 0 |+0|3 4 2 -2 0 6 0 5 -7 |
=-2(3|5 -7 9 0 |+4|4 4 5 -7 |)-3(2|-2 0 4 9 |-6|3 4 -2 0 |)
=-2(189-152)-3(-36-66)
=-2(37)-3(-102)
=-74+306
=232. (Zurni et al. 2010).
- (a) (0 1 -3 2 3 -1 4 5 -2 )(x1 x2 x3 )=(-5 7 10 )
(b) 0|3 -1 5 -2 |-1|2 -1 4 -2 |-3|2 3 4 5 |
=0(-6+5)-1(-4+4)-3(10-12)
=0-0-3(-2)
= 6. (Zurni et al. 2010).
(c) Minor matrix
(0 1 -3 2 3 -1 4 5 -2 )
((-6+5) (-4+4) (10-12) (-2+15) (0+12) (0-4) (-1+9) (0+6) (0-2) )
=(-1 0 -2 13 12 -4 8 6 -2 ).
(c) Cofactor matrix
((+×-1) (-×0) (+×-2) (-×+13) (+×+12) (-×-4) (+×+8) (-×+6) (+×-2) )
=(-1 0 -2 -13 12 4 8 -6 -2 )
Ad joint matrix
= (Cofactor)T
=(-1 -13 8 0 12 -6 -2 4 -2 )
Inverse matrix
=16(-1 -13 8 0 12 -6 -2 4 -2 )
=(-16 -136 43 0 2 -1 -13 23 -13 ). Zurni, O., Noraziah, H, M., Hawa, I., Fatinah, Z., & Azizan, S. (2010, p.13-16).
(d) Solutions
=(-16 -136 43 0 2 -1 -13 23 -13 )(-5 7 10 )
3×3 3×1
=((56-916+403) (0+14-10) (53+143-103) )
∴(x1 x2 x3 )=(-1 4 3 ).(Zurni et al. 2010).
- (a) (0 1 1 3 -1 1 1 1 -3 )(x y z )(6 -7 -13 )
Determinant of A
0|-1 1 1 -3 |-1|3 1 1 -3 |+1|3 -1 1 1 |
=0-1(-9-1)+1(3+1)
=14
Determinant of A1
(6 1 1 -7 -1 1 -13 1 -3 )
6|-1 1 1 -3 |-1|-7 1 -13 -3 |+1|-7 -1 -13 1 |
=6(3-1)-1(21+13)+1(-7-13)
=-42
Determinant A2
(0 6 1 3 -7 1 1 -13 -3 )
0|-7 1 -13 -3 |-6|3 1 1 -3 |+1|3 -7 1 -13 |
=0-6(-9-1)+1(-39+7)
=28
Determinant A3
(0 1 6 3 -1 -7 1 1 -13 )
0|-1 -7 1 -13 |-1|3 -7 1 -13 |+6|3 -1 1 1 |
=0-1(-39+7)+6(3+1)
=56
∴ x=-4214 y=2814 z=5614
=-3 =2 =4 (Zurni et al. 2010).
(b) y=x2-4x-5
dydx=2x-4
Gradient at point A
M1=2(3)-4=2
Coordinate of point A
y=32-4(3)-5=-8
(x,y)=(3,-8). Uses of differentiation. (n.d).
Equation of tangent line
-8=2(3)+c c=-14
y=2x-14
Equation of perpendicular line
m1×m2=-1 2×m2=-1
m2=-12
-8=-12(3)+c c=-132
y=-12x-132
Coordinate of point B
-12x-132=x2-4x-5
(b) 2x2-7x+3=0 (x-3)(2x-1)=0
x=3 x=12
y=(12)2-4(12)-5 y=-274 ∴B=(12,-274)
Coordinate at x=0
y=02-4(0)-5 ∴(0,-5)
Coordinates at y=0
x2-4x-5=0 (x-5)(x+1)=0
x=5 x=-1 ∴ (-1,0) (5,0)
Coordinate at minimum point
y=22-4(2)-5 ∴(2,-9). (Zurni et al. 2010).
(c)
(Zurni et al. 2010).
- (a)
- f(x)=x+22
Dom f={xϵR, x≥-2}
Range f={yϵR, y≥0}
g(x)=3-x5-x
Dom g={xϵR, x≠5 }
Range g={yϵR, -1≤y≤3}
h(x)=x2-6
Dom h={xϵR, }
Range h={yϵR, y≥-6}
- ff(34)=34+22 =3
3+22 =52 =1.12
gf(47)= 47+22 72=3.5
3-3.55-3.5 =-13
hf(x)=(x+22)2-6
=(x12+2122)2-6
=x+24-6
=x-224. Operations on Functions. (n.d).
- y=3-x5-x
x=3-y5-y
5x-xy=3-y
y(x-x)=-5x+3
g-1(x)=(-5x+3)(1-x). Definition of Inverse Function. (n.d).
(b)
=x-23y5z3×x4325x12y-23
=x16y53125z3
(Zurni et al. 2010).
(c)
= 25+29-5×4226
=5+9-(5×2)6
=23
(Zurni et al. 2010).
References
Definition of Inverse Function. (n.d). Retrieved September 26, 2011, from http://www.regentsprep.org/Regents/math/algtrig/ATP8/inverselesson.htm
Operations on Functions. (n.d). Retrieved September 26, 2011, from http://www.purplemath.com/modules/fcnops.htm
Uses of differentiation. (n.d). Retrieved September 26, 2011, from http://www.mathsrevision.net/alevel/pages.php?page=45
Zurni, O., Noraziah, H, M., Hawa, I., Fatinah, Z., & Azizan, S. (2010). Mathematics for Management. Malaysia: Metero Doc. Sdn. Bhd.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.