Wednesday, December 23, 2015

Module Name: Introduction to Statistics


Open University Malaysia
Faculty of Business and Management
SBST1103
Introduction to Statistics


Name: Adam Khaleel


Tutor’ Name: Mr. Naushaadh
Learning Centre: Villa College


Trimester:  January 2012

Contents

Question No: 1

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 1-10),
  1. Continuous quantitative variable
  2. Qualitative variable
  3. Continuous quantitative variable
  4. Continuous quantitative variable
  5. Discrete quantitative variable

Question No: 2

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 25-34),
  1. A group of 25 pair of jeans produced in California, Arizona and taxes which is a quantitative variable.
b)   California= 9/25*100     Arizona= 8/25*100      Texas= 8/25*100
=36%                         =32%                        =32%

Question No: 2

C) According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 25-34),

d) 825
e) California
f) Pie chart shows the percentage of pair of jeans produced in each state and the bar chart shows the total number of jeans produced in each state. Therefore the highest percentage in the pie chart that is 36% and the highest bar that is 9 pair of jeans in bar chart indicates that in California produced more jeans than other two states individually. In addition to this in Taxes and Arizona produced 32% that is 8 pair of jeans for each state.

Question No: 3

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 1-59),
  1. Mean = (550+400+260+320+500+480+460+480+510+490+505)11
                      = 495511 = £ 450.50
          Mode = £ 480
  1. 260   320   400   460   480   480   490   500   505   510   550
= 11+12= 6th place
Median = £ 480
  1. Lower quartile = 14(11+1)= 3rd place
Lower quartile = £ 400
Upper quartile = 34(11+1)= 9th place
Upper quartile = £ 505

Question No: 4

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 38-59),
  1.             No. of classes                             Class width = (32.3-0.2)6
                       K = 1+3.3log (n)                                               = 5.35 or = 5 months
                           = 1+3.3log (50)
                           = 6.6

Question No: 4       

Class
Counting tally
Frequency (f)
Relative frequency
Relative frequency (%)
0  ̶  4
////   ////   ////   ////   //
22
0.44
44
5  ̶  9
////   ////   //
12
0.24
24
10  ̶  14
////   /
6
0.12
12
15  ̶  19
////   /
6
0.12
12
20  ̶  24
//
2
0.04
4
25  ̶  29
/
1
0.02
2
30  ̶  34
/
1
0.02
2
Sum

f = 50
1
100

  1. The shape is positively skewed because the mode < median < mean.
  2. 22+12 = 32
= 3250= 1625

Question No: 5

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 38-59),
     Âµ = (230×10)+(200×20)10+20
       = 630030
          = MRF 210.

Question No: 6

According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 38-59),
       (30×F)+(60×160)90 =150
       30F + 9600 = 13500
       30F = 13500  ̶  9600
       F = 390030   = 130,          
Therefore average daily wages of female is MRF 130.

Question No: 7

a) According to Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 38-59),
Class interval
10  ̶  20
20  ̶  30
30  ̶  40
40  ̶  50
50  ̶  60
60  ̶  70
Frequency
10
20
30
25
10
5
Mid points
15
25
35
45
55
65



Question No: 7

b)
Marks
0  ̶  10
10  ̶  20
20  ̶  30
30  ̶  40
40  ̶  50
50  ̶  60
No. of Students
10
20
30
50
40
30
Upper boundary
10.5
20.5
30.5
40.5
50.5
60.5
Cumulative Frequency
10
30
60
110
150
180



References

Dr. Shahran, M, K., Dr. Mukherjee, T, K. (2010, p. 1-59). Introduction to Statistics. Malaysia: Metero Doc. Sdn. Bhd.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.